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A B S T R A C T

Identifying elite inbred parent lines that produce high-performing hybrid Pacific oyster seed requires diallel or
factorial test crosses among lines, each acting as both a male and a female parent. Previously, we used the
generalized linear model with fixed effects (i.e. GLM) to partition variance in yield, among hybrid families
produced by a diallel cross, into causal genetic components—principally, general combining ability (GCA),
specific combining ability (SCA), and reciprocal effect (R). However, GLM is extremely sensitive to missing
information, which arises from loss of hybrid families for random environmental causes or from variation in the
reproductive success of parent lines. To resolve this issue, we apply a Bayesian hierarchical model, which
partitions yield variance into the familiar causal genetic components, while providing Bayesian shrinkage es-
timates incorporating the uncertainty of missing data. Our study suggests that correlation between observed
yields and those predicted by the Bayesian model is high (r2≥0.99), for observed offspring, regardless of diallel
completeness. Additionally, in analyses of complete diallel crosses, line-specific GCA rankings from GLM and
Bayesian models are consistent for parent lines. Finally, comparing simulated complete and incomplete diallel
datasets, we show the accuracy of predicted yield for families that are present and of parent-line ranking by GCA
and the reliability of parent-line selection for double-cross hybrids, especially when non-parental lines (i.e. the
four hybrid parents used to predict the yield of double-cross hybrids) are present. Our study demonstrates that
the Bayesian hierarchical model performs as well as GLM in analyzing complete diallel crosses and can properly
deal with incomplete diallel crosses for which GLM does not work. Therefore, the Bayesian hierarchical model is
powerful in diallel analysis to select superior parent lines for producing high-yielding, hybrid, Pacific oyster
seed.

1. Introduction

The Pacific oyster Crassostrea gigas shows remarkable heterosis
(hybrid vigor) for yield and its underlying components, growth and
survival (Hedgecock et al., 1995; Launey and Hedgecock, 2001; Pace
et al., 2006; Hedgecock and Davis, 2007; Plough and Hedgecock,
2011). Yield of F1 hybrids significantly exceed that of the better-
yielding parent in 16 of 22 cases (Hedgecock and Davis, 2007), meeting
Griffing's (1990) operational definition of heterosis, i.e. potence,
hp=Q/L > 1.0, where Q is twice the deviation of a hybrid from the
mid-parent value and L is the absolute difference between the parent
trait-values. The widespread phenomenon of “better-parent” heterosis
in crosses of inbred lines of the Pacific oyster, when evaluated in
aquaculture systems, suggests that production of hybrid cultivars by
crossbreeding has great potential to improve oyster yield (Hedgecock

and Davis, 2007).
Diallel crosses, factorial mating experiments using a set of inbred

lines as both male and female parents, allow calculation of causal
components of variance in yield—general combining ability (GCA),
specific combining ability (SCA), and reciprocal effect (R). Estimates of
these components of yield-variance, typically derived from the gen-
eralized linear model with fixed effects (GLM) for diallel designs
(Griffing, 1956), allow selection of superior parent lines for commercial
production of hybrid oysters. Hedgecock and Davis (2007) show that
yields of the Pacific oyster increase with GCA, as expected (Langdon
et al., 2003; de Melo et al., 2016), but that non-additive genetic com-
ponents of yield variance, SCA and R, make substantial contributions to
yield that are often larger than the contribution of GCA. However,
Hedgecock and Davis (2007) also revealed limitations of the GLM for
analyzing data from diallel crosses with missing data. In practice, diallel
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crosses rarely conform to one of the classical designs, owing to re-
productive failure or environmental factors (Hedgecock and Davis,
2007). Solutions to the problem of missing data include dropping
parent lines, resulting in loss of power, collapsing incomplete diallel
crosses to complete, pseudo-partial diallel crosses, diminishing the
scope of inference about SCA and R, or imputation of missing data
(Turner et al., 2018).

Here, we compare previous results obtained from GLM with results
from an alternative, Bayesian hierarchical model for analyzing data
from diallel crosses (Lenarcic et al., 2012). The Bayesian model parti-
tions yield-variance into familiar parameters, i.e. additive, heterotic,
epistatic, and parent-of-origin effects, while overcoming the difficulties
posed by incomplete or imbalanced data and by data outliers. We find
correspondences between the effects specified in the Bayesian hier-
archical model and the classical components of yield-variance. We
further explore the reliability of estimates of GCA, SCA and R provided
by the Bayesian hierarchical model through simulations with two pat-
terns of missing data, random loss of families and random loss of
parent-line representation, mimicking the commonly observed re-
productive failure of certain parent lines in diallel crosses of oysters
(Lannan, 1980; Hedgecock and Davis, 2007). Finally, we focus on the
reliability, in the face of missing data, of (1) ranking parent lines to
identify those worthy of further consideration for production of single-
cross hybrids and (2) identifying F1 hybrids for production of double-
cross hybrids. Jones (1918, 1922) promoted the use of double-cross
hybrids in the early days of maize breeding, as a way of circumventing
the handicap of producing F1 hybrid seed on an inbred parent; double-
cross hybrids likely present the same advantage for the Pacific oyster,
since inbred oysters are small and produce inadequate numbers of eggs
for commercial hatchery production.

As noted above, diallel crosses rarely produce the next generation of
the parental lines, owing to inbreeding depression (Lannan, 1980;
Launey and Hedgecock, 2001; Evans et al., 2004; Plough and
Hedgecock, 2011). Since our main interest, here, is in the practical
application of information from diallel crosses to the crossbreeding of
superior hybrid cultivars, we focus on Griffing's (1956) Method 3 for
analyzing a diallel cross that yields data on all p(p−1) F1 hybrids from
p parent lines. In this partial diallel, without inbred parents, we can
estimate the extra-nuclear effects, R, causing differences between re-
ciprocal hybrids.

2. Materials and methods

2.1. Data on yield from diallel crosses

We collected data on yield from six diallel crosses, which we name
by birth year and experiment number (e.g. 01x1 stands for the first

experimental cross set up in 2001; Table 1). Hedgecock and Davis
(2007) previously reported analyses of data from four of these crosses;
we have not previously reported analyses of data from the 12x1 and
12x2 crosses. We represent inbred parent lines by a number, which is an
abbreviation of the full family name described by Hedgecock and Davis
(2007), and first-generation hybrid offspring (F1 families) by a sir-
e×dam name (e.g. 2× 10 stands for offspring with paternal parent
from inbred line 2 and maternal parent from inbred line 10; Table 1).

We obtained yield (biomass) data at different phases in the pro-
duction cycle for three diallel crosses, as described by Hedgecock and
Davis (2007). Phase II is indoor replicated nursery culture in upwelling
tubes; Phase III is outdoor replicated nursery culture in suspended,
rotating seed cages; Phase IV is final grow out of adults in on-bottom
cages. In simulations described below, we refer to Phase III oysters as
juvenile and Phase IV oysters as adult.

With one exception (01x1-IV), the phenotype analyzed is mean live
weight per individual oyster in a rearing unit at the end of a given phase
of culture (i.e. total live weight of oysters per cage or tube divided by
the count of live oysters). Since survival was generally high for all ju-
veniles, mean live weight is a measure of biomass yield in this study. In
01x1-IV, we analyze total weight of oysters per cage. Altogether, we
analyzed nine, partial or incomplete and four, complete diallel datasets
(see Table 1 for diallel cross names, the number and names of parent
lines, and culture phases for yield data). We identify complete diallel
crosses that are embedded within larger, incomplete diallel crosses.

2.2. Statistical models

Traditionally, diallel crosses are analyzed by GLM (Griffing, 1956),

Y g g s r eijk i j ij ij ijk= + + + + (1)

where Yijk is mean live weight per individual, gi is the general (additive)
combining ability (GCA) of paternal parent i, gj is the GCA of maternal
parent j, sij is the specific (non-additive) combining ability (SCA) of
hybrid i× j, rij is the reciprocal effect (R), accounting for differences
between reciprocal hybrids i× j and j× i, when reciprocal hybrids are
included, and eijk is experimental error.

In this study, we analyze diallel crosses, using a subset of the full
Bayesian hierarchical model proposed by Lenarcic et al. (2012), who
provide a detailed explanation of the BayesDiallel model and compar-
ison with Griffing's method. One notable difference between Bayes-
Diallel and conventional models of dominance is that BayesDiallel
models heterosis as inbred-specific deviations from heterozygote-based
predictions. In their terminology, we fit the “Babmvw” model, which
incorporates interactions between pairs of parent lines. For hybrid fa-
milies (j≠ k),

Y µ a m a m v w e–jki j j k k jk jk i= + + + + + + (2)

Table 1
Summary of diallel crosses and diallel datasets.

Diallel cross Culture phase Dataset code No. parent lines Parent lines

A) Incomplete diallel crosses
01x1 III, IV 01x1-III, -IV 6 2, 10, 35, 38, 46, 51
01x4 III, IV 01x4-III, -IV 7 9, 28, 33, 35, 41, 46, 53
03x6 II, III 03x6-II, -III 9 20, 26, 35, 36, 45, 47, 51, 52, 92
03x8 IV 03x8-IV 7 3, 9, 19, 21, 40, 61, 94
12x1 III 12x1-III 10 8, 15, 19, 20, 21, 24, 32, 33, 34, 35
12x2 III 12x2-III 8 7–39, 16, 5, 26, 2–39, 30, 36, 45

B) Complete diallel crosses
01x1 III, IV 01x1-IIIC, -IVC 5 2, 35, 38, 46, 51
03x6 II, III 03x6-IIC, -IIIC 5 26, 36, 45, 47, 92

Diallel cross is named by birth year and experiment number (e.g. 01x1 stands for the first experimental cross set up in 2001). Culture phase is defined as described by
Hedgecock and Davis (2007): phase II is indoor replicated nursery culture in upwelling tubes; phase III is outdoor replicated nursery culture in suspended, rotating
seed cages; phase IV is final grow out of adults in on-bottom cages. Dataset code is represented by diallel cross and culture phase (e.g. 01x1-III stands for data
collected from diallel cross 01x1 at culture phase III). Cross codes followed by a “C” are complete diallel datasets; the rest are incomplete diallel datasets.
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where Yjki is mean live weight per individual, μ is the grand mean live
weight per individual oyster in a diallel cross, aj and ak are additive
(dosage) effects of parent lines, mj and mk are maternal effects of parent
lines, vjk is the family-specific symmetric effect for cross j× k
(dam×sire), wjk is the family-specific asymmetric effect for cross j× k
(dam×sire), and ei is error for an individual oyster i in the cross of
maternal parent j×paternal parent k. For reciprocal hybrid families,
vjk= vkj and wjk=−wkj. For this BayesDiallel mixed model with six
variance components, we estimate a set of priors on the variance
components, which make the model Bayesian, and fit the model using a
Markov Chain Monte Carlo (MCMC) Gibbs sampler with five chains,
3500 iterations, and a burn-in of 1000.

The genetic components, GCA, SCA, and R, in GLM correspond to
analogous terms in the Bayesian hierarchical model, according to their
biological interpretations. GCA in GLM is equal to the parental additive
effects in the Bayesian hierarchical model. SCA corresponds to the fa-
mily-specific symmetric effect. R corresponds to a combination of ma-
ternal and family-specific asymmetric effects for hybrid families.
Posterior distributions and point estimates of these genetic effects and
the average live weights of families were obtained from Bayesian
analysis as implemented in BayesDiallel, a program running in R 3.0.2
(Lenarcic et al., 2012).

Finally, we compared observed and predicted yields by obtaining
the regression equation and the coefficient of determination (r2) be-
tween observed and predicted yields and between Bayesian- and GLM-
predicted yields (Tables 2, 3).

2.3. Diallel cross simulation

To test the performance of BayesDiallel, we simulated diallel-cross
datasets, using eq. (2) to obtain live weight per individual cage. Genetic
effects (i.e. a, m, v, w) and μ in Eq. (2) are assumed to be normally
distributed, so two parameters, mean and standard deviation, are
needed to simulate μ and the genetic effects for each parent line and
cross, the sum of which is simulated live weight per cage. Since yield
should be positive, we took the absolute value of simulated yield for all
cages. Two experimental factors modeled in these simulations are (i)
the phase when data on live weight are collected (i.e. Phase) and (ii) the
pattern of missing (or present) families (i.e. Pattern).

We used means and standard deviations for μ and genetic effects of
seven inbred parent lines in Bayesian outputs for 12x1-III and 03x8-IV
as means and standard deviations in simulations. We simulated μ and
genetic effects (i.e. a, m, v, w) independently. We generated cage live
weights in 7× 7 diallel crosses at both juvenile (simulated based on
12x1-III Bayesian output) and adult (simulated based on 03x8-IV
Bayesian output) life stages. Since we were not interested in inbred
families, we removed all inbred families from simulated 7× 7 diallel
crosses. In total, we simulated 1000 complete diallel datasets (coded as
CPLT) for each of the juvenile and adult life stages, each consisting of
42 hybrid families. We simulated the rearing of each family in 10 cages,
yielding ten mean live weights per cage for each family.

Generally, two types of missing-family patterns are observed in
practice: randomly missing families (symbolized as R) and randomly
missing rows or columns, owing to loss of all hybrid families sharing a
common parent line (symbolized as RRC; Lannan, 1980; Hedgecock and
Davis, 2007; examples of these two patterns are in Fig. S1). For simu-
lated R diallel crosses, 21 hybrid families (50% of hybrid families) were
randomly removed from CPLT diallel crosses, generating incomplete
diallel crosses consisting of 21 hybrid families. For simulated RRC
diallel crosses, we randomly removed three rows or columns, producing
incomplete diallel crosses consisting of 24 or 26 hybrid families.

In total, there are four Phase-by-Pattern combinations of simulated
diallel datasets (i.e. Juvenile-R, Juvenile-RRC, Adult-R, and Adult-
RRC). Since 1000 CPLT diallel datasets were simulated for each life
stage, 1000 different 7×7 diallel datasets were generated under each
Phase-by-Pattern combination by randomly removing different families
(for R diallel crosses) and different rows or columns (for RRC diallel
crosses) from CPLT diallel crosses. In total, 4000 incomplete diallel
datasets were simulated, among which R and RRC diallel crosses consist
of 210 and 240 (or 260) cages, respectively. All simulated diallel crosses
and the R-code for simulating diallel-cross data are available upon re-
quest.

2.4. Parent-line ranking

Although Griffing (1956) takes the variance of GCA and SCA into
consideration in selecting superior parent lines, we simply use GCA to
explore the effect of missing data on the selection of top parent lines.
For each complete diallel dataset (01x1-IIIC, 01x1-IVC, 03x6-IIC, 03x6-
IIIC), we computed line-specific GCA estimates from GLM and Bayesian
analyses. For each simulated incomplete diallel cross, we estimated
line-specific GCA, using Bayesian analysis. We found the top three
parent lines in each simulated complete diallel dataset and then
counted the number of non-top-three parent lines identified in in-
complete diallel datasets (mismatches). To test how the number of
missing families influences the GCA ranking of a parent line, we re-
corded the difference in parent-line GCA ranks between each simulated
complete diallel dataset and its corresponding incomplete diallel da-
taset (7 parent lines × 1000 simulations × 4 complete vs. incomplete
pattern pairs). We then compared this difference in ranks against the
number of missing families for the corresponding parent line for each
Phase-by-Pattern combination, using one-way ANOVA, with the
number of missing families as an independent variable and the rank
difference as a dependent variable.

2.5. Double-cross hybrid parent selection

We simulated the generation of double-cross hybrids from crosses
between two unrelated hybrid parents. The yield of double-cross hy-
brids can be predicted by the yield of hybrid families in a diallel cross
according to Method B of Jenkins (1934), in which

Y Y Y Y Y( )/4(A B) (C D) A C A D B C B D= + + +× × × × × × × (3)

where Y(A×B)×(C×D) is the predicted yield of a double-cross hybrid
AB×CD and YA×C, YA×D, YB×C and YB×D are the observed yields of

Table 2
Relationships among GLM-predicted, Bayesian-predicted, and observed yields
in analyses of 5× 5 complete diallel crosses.

Dataset Regression equation r2

GLM-predicted versus observed yield
(x: observed yield; y: GLM-predicted yield)

01x1-IIIC y=1.0133x+0.0561 0.9974
01x1-IVC y=0.9917x+8.3825 0.9975
03x6-IIC y= x - 0.061 1.0
03x6-IIIC y= x - 0.0375 1.0

Bayesian-predicted versus observed yield
(x: observed yield; y: Bayesian-predicted yield)

01x1-IIIC y=0.9833x+0.0204 0.9997
01x1-IVC y=1.0292x – 86.783 0.999
03x6-IIC y=1.0066x – 0.0004 0.9993
03x6-IIIC y=0.7383x+1.3485 0.9904

Bayesian-predicted versus GLM-predicted yield
(x: Bayesian-predicted yield; y: GLM-predicted yield)

01x1-IIIC y=1.0304x+0.0352 0.9976
01x1-IVC y=1.0206x – 77.394 0.9963
03x6-IIC y=0.9928x – 0.0161 0.9993
03x6-IIIC y=1.3416x – 1.7971 0.9904

Dataset is coded by diallel cross and culture phase (e.g. 01x1-III stands for data
collected from diallel cross 01x1 at culture phase III). Dataset codes followed by
a “C” are complete diallel datasets. The data analyzed are average live weights
per individual (g/individual) per cage, except for diallel dataset 01x1-IV, which
are total biomass (g) per cage.
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hybrid families A×C, A×D, B×C and B×D, respectively. Families
A×B and C×D are called parental lines because they serve as parents
for the double-cross hybrid; families A×C, A×D, B×C and B×D
are called non-parental lines, because they are only used for predicting
the yield of the double-cross hybrid and do not serve as parents.

In order to select the optimal parents for double-cross hybrids, we
need accurate estimates of the yield of missing non-parental lines. We
assesed the accuracy of predicted yields of missing non-parental lines,
using the coefficient of correlation (r) between estimated yields in si-
mulated complete diallel crosses and predicted yields in simulated in-
complete (R or RRC) diallel crosses.

3. Results

3.1. Predictions of yield by GLM and Bayesian methods in analyses of data
from diallel crosses

In analyses of data from complete diallel crosses, correlations be-
tween observed and predicted yields from GLM and Bayesian analyses
are high for all hybrid families, with coefficients of determination (r2)
above 0.99 for both methods (Table 2). Predicted yields from both
methods are also highly correlated. In analyses of data from incomplete
diallel crosses, with as many as 67% of families missing, coefficients of
determination (r2) for linear regressions of Bayesian-predicted yield on
observed yield for existing families range from 0.968 to 1 (Table 3).

3.2. Performance of BayesDiallel in simulated complete and incomplete
diallel crosses

We use simulations based on real diallel datasets, representing ju-
venile and adult culture phases (12x1-III and 03x8-IV, respectively), to
explore the performance of BayesDiallel under two patterns of missing
data, randomly missing families (R) and randomly missing rows and
columns (RRC). Each simulated, complete dataset generates R and RRC
incomplete datasets for comparison. Across 1000 simulations for each
of the four Phase-by-Pattern combinations, correlation coefficients (r)
of predicted yields between simulated complete and incomplete diallel
crosses are above 0.98 on average for existing families, but cluster from
0.4–1 for missing families (Fig. 1).

Predictions of line-specific GCA ranking by GLM and Bayesian
analyses are consistent for all parent lines in complete diallel crosses
(Fig. 2). Mean difference in rank of line-specific GCA between simulated
complete and incomplete diallel crosses, for all parent lines, is affected
only slightly but significantly by the number of missing families per
parent line in the randomly missing, R-pattern (F10, 6989=4.67,

P < .0001 for Adult-R; F10, 6989=9.25, P < .0001 for Juvenile-R).
When entire rows or columns are missing (the RRC-pattern), then the
number of missing families per parent line falls into four discrete classes
(see Fig. S1) and makes a significant difference of about half a rank,
when> 3 families are missing per parent line (F3, 6996=214.26,
P < .0001 for Adult-RRC; F3, 6996=116.9, P < .0001 for Juvenile-
RRC; Fig. 3).

3.3. Selection of superior parent lines for F1 and double-cross hybrids

We also use simulations to explore the accuracy and precision of
identifying superior parent lines in analyses of incomplete diallel
crosses. We, first, rank parent lines in simulations of complete diallel
sets by line-specific GCA. Next, we find the top three parent lines in
each simulated, incomplete diallel dataset and count how many of these
match the top-three parent lines identified in the paired, complete
diallel dataset. Across 1000 simulations of each of four types of in-
complete diallel datasets (Juvenile-R, Juvenile-RRC, Adult-R and Adult-
RRC), top-three parent lines are matched to those in the paired, simu-
lated, complete diallel dataset, an average of 2.24 ± 0.02,
2.20 ± 0.02, 2.76 ± 0.01, and 2.55 ± 0.02 times, respectively
(Table 4).

4. Discussion

4.1. Comparison of GLM and Bayesian analyses

Diallel analysis allows partitioning of variance in yield into the
genetic components of general combining ability (GCA), specific com-
bining ability (SCA) and reciprocal effect (R). In our study of complete
diallel-cross datasets, GLM and Bayesian hierarchical models ex-
plain> 99% of the variance in observed yields of young seed, juveniles,
and adults (culture Phases II to IV; Table 2). This indicates that both
GLM and Bayesian analysis are powerful tools for complete diallel
analysis, regardless of which life stage furnishes the yield data. How-
ever, in practice, unanticipated missing information makes it hard to
extract information from a diallel cross, using traditional GLM methods.
Recent development of imputation methods allows for analyses of
crosses with missing data (Turner et al., 2018), but these methods are
still quite cumbersome, requiring extra computational steps. Bayes-
Diallel, on the other hand, provides a straightforward means for con-
ducting Bayesian analyses of incomplete diallel-cross data. Our simu-
lations show that, even when up to half of the hybrid families are lost
from a full diallel cross, Bayesian analysis can still effectively estimate
the genetic components GCA, SCA and R, and accurately predict yield

Table 3
Predictions of yield by Bayesian analysis for existing families in incomplete diallel crosses.

Diallel dataset No. of
families
attempted

No. of
families
obtained

Observed yield
(g/individual)
(mean ± s.d.)

Predicted yield
(g/individual)
(mean ± s.d.)

Regression
equation

r2

01x1-III 30 25 1.17 ± 0.24 1.17 ± 0.22 y=0.98x+0.02 1.0
01x1-IV 30 25 3214 ± 475 3193 ± 424 y=1.04x-117.68 0.998
01x4-III 42 21 0.95 ± 0.17 0.98 ± 0.14 y=0.97x+0.03 1.0
01x4-IV 42 21 25.55 ± 4.44 25.62 ± 3.25 y=0.81x+4.89 0.968
03x6-II 72 44 0.06 ± 0.02 0.06 ± 0.01 y= x-0.0001 0.999
03x6-III 72 44 5.18 ± 0.92 5.18 ± 0.57 y=0.77x+1.19 0.984
03x8-IV 42 26 60.04 ± 8.43 60.25 ± 6.74 y=0.94x+3.77 0.996
12x1-III 90 29 0.82 ± 0.27 0.84 ± 0.18 y=0.96x+0.03 1.0
12x2-III 56 25 1.75 ± 0.46 1.79 ± 0.34 y=0.96x+0.07 0.999

Observed and predicted yields are grand means across existing families. Linear regressions are Bayesian-predicted yield [dependent variable, y] on observed yield
[independent variable, x] for existing families. Observed and predicted yields for diallel cross 01x1-IV are total biomass (g) per cage.
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for existing families (Fig. 1; Fig. S2). At the same time, these simula-
tions suggest caution in making inferences about the yield of missing
families, since the accuracy and precision of these estimates are rather
poor (Fig. 1); however, this limitation may not be of practical concern
for crossbreeding.

4.2. Line-specific GCA ranking and parent line selection

We selected top parent lines according to their line-specific GCA
(Griffing, 1956). Comparing ranks of line-specific GCA estimates from
GLM and Bayesian analysis, we find that the two methods yield con-
sistent rankings for all parent lines in four, 5× 5 complete diallel da-
tasets. Therefore, Bayesian analysis provides reliable information for
selecting superior parent lines in complete diallel crosses.

In our simulations, an average of 2.2 to 2.8 of three top parent lines
are correctly selected according to line-specific GCA rank, regardless of
missing pattern or life stage (Table 4). This result suggests that the
Bayesian hierarchical model is reliable for estimating GCA and useful
for selecting superior parent lines for further development and cross-
breeding. Parent-line selection is less accurate for RRC than for R diallel
crosses, because less information is available for a specific parent line,
when, owing to reproductive failure of some parent lines, entire rows or
columns are missing (Table 4). In contrast, when families are missing
randomly, owing to random environmental factors, the loss of in-
formation does not appear to have a severe impact on the analysis of the
diallel cross and on picking superior parent lines.

For each missing pattern, parent-line selection appears to be more

accurate for the Adult than for the Juvenile stage (Table 4), but this is
likely attributable to different signal-to-noise ratios in the underlying
datasets (i.e. variance among families divided by averge variance
within family). Mean signal-to-noise ratios for diallel crosses Juvenile-
R, Juvenile-RRC, Adult-R and Adult-RRC are 1.66, 1.61, 6.49 and 6.15,
respectively. This suggests that decreased signal-to-noise ratios in yield
data collected from younger life stages may decrease the accuracy of
top parent-line selection, but signal-to-noise ratio can be increased by
setting up more replicate cages for each family. Meanwhile, within a
certain range, the number of missing families of a parent line also af-
fects the accuracy of line-specific GCA ranking for that parent line. For
diallel crosses with random losses of families, the line-specific GCA
ranking tends to be only slightly less accurate as the number of missing
families per parent line increases from one to ten (rank differences,
0.377 vs. 0.613, respectively). For diallel crosses with randomly
missing parent-line representation, the GCA rank difference is much
smaller when only three families are missing for a parent line (Fig. 3).
Regardless of patterns and stages of diallel crosses, the predicted (CPLT-
R) or median (CPLT-RRC) absolute line-specific GCA rank difference of
parent lines is around or smaller than 1 (Fig. 3), demonstrating accurate
line-specific GCA rankings based on the Bayesian hierarchical model in
the face of missing data.

4.3. Double-cross hybrids

Since inbred oysters are small and produce inadequate numbers of
eggs, commercial production of hybrid oysters can borrow a method
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Fig. 1. Density plots of correlation coefficients (r) of predicted yields between simulated complete and incomplete (R and RRC) diallel crosses for missing and existing
F1 hybrid families. The “No. simulated diallel datasets” is the number of diallel datasets with a certain r. Juvenile and Adult represent diallel crosses simulated based
on 12x1-III and 03x8-IV Bayesian outputs, respectively; R and RRC stand for two missing patterns.
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from the early days of hybrid corn breeding, creating double-cross
hybrid families by crossing two, unrelated F1 hybrid parents. This
strategy permits use of robust, highly fecund, F1 hybrid females for
commercial hatchery crosses. We may select F1 parents for double-cross
hybrids, by estimating double-cross hybrid performance from the yields
of F1 non-parental lines (Jenkins, 1934). Analyses of both real and si-
mulated incomplete diallel crosses demonstrate that the Bayesian
hierarchical model can accurately predict the yield of existing F1 fa-
milies (Table 3; Fig. 1). Therefore, we may be confident in parents se-
lected for double-cross hybrids, when all non-parental lines are present
in a diallel cross, because the estimate of double-cross hybrid yield is
accurate.

However, some non-parental lines are lost in diallel crosses in
practice. In this case, we need to be cautious in selecting superior
parents for double-cross hybrids. Predictions of yields for the Adult
stage appear to be better than those for the Juvenile stage, and at the
Adult stage, yield is more accurately estimated for R than for RRC
diallel cross (Fig. 1). Again, the better predictions for the Adult stage
may be driven by a larger signal-to-noise ratio of yield data collected at
the later life stage. Thus, as in parent-line selection for F1 hybrids, the
design of diallel crosses should aim to increase the signal-to-noise ratio
of yield data. Moreover, predicted yields of F1 parents for making
double-cross hybrids and estimating their yields appear to be more
accurate in incomplete diallel crosses with randomly missing families
driven by environmental factors than in those with missing parent-line
representation driven by reproductive failures.

Based on our analyses of simulated diallel crosses, the overall pre-
diction of yields for missing F1 families does not seem to be very reliable

for selecting parents for double-cross hybrids (Fig. 1). The poor pre-
diction of yield for missing F1 families is largely attributable to in-
accurate estimation on SCA and R (Fig. S2), suggesting that, in addition
to GCA, SCA and R are also important factors to consider in parent line
selection for both F1 and double-cross hybrids. Improving the accuracy
of predicting SCA and R could make parent-line selection more reliable.

In practice, parent-line selection should be more promising for
double-cross hybrids. In our study, we assume that ~40% of families
are missing in a simulated diallel cross, but a higher percentage of fa-
milies often survive in reality. Availability of more unrelated hybrid
families in a diallel cross can generate a sufficient number of double-
cross hybrid families without any non-parental line missing. In addi-
tion, a larger number of surviving families in a diallel cross can de-
crease the number of missing non-parental lines for potential double-
cross hybrids, thus improving the accuracy of estimates on the double-
cross hybrid yield. Even if such a high proportion (i.e. ~40%) of fa-
milies were missing in practice, one could reduce the dimension of the
diallel crosses for analysis, in which case the accuracy of predicted
yields would improve. Therefore, compared to our simulated study,
selecting parents for setting up double-cross hybrids in practice should
be more reliable.

5. Conclusions

By partitioning variance in yield among families in a diallel cross,
regardless of its completeness, into GCA, SCA and R components, the
Bayesian hierarchical model provides a powerful analytical means for
selecting superior parent lines to improve the yield of hybrid Pacific
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Fig. 2. GLM-predicted vs. Bayesian-predicted line-specific GCA. GLM-predicted and Bayesian-predicted line-specific GCA refer to predications based on the gen-
eralized linear model with fixed effects and the Bayesian hierarchical model, respectively.
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oysters. Line-specific GCA, predicted by the Bayesian hierarchical
model, is a good parameter for correctly identifying top parent lines for
further development and crossbreeding. Increasing replication and
signal-to-noise ratios, while reducing the number of missing families,
especially by properly conditioning parent lines to prevent loss of rows
and columns in a diallel, are promising approaches to increasing the
accuracy of predicting inbred and hybrid parent-line performance.
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families per parent line. Size of bubbles represents the number of observations with specific no. missing families and absolute rank difference. For each Phase-by-
Pattern combination, 7000 parent lines are simulated. CPLT-R: the rank of line-specific GCA for a parent line in diallel cross CPLT minus the rank of line-specific GCA
for the same parent line in diallel cross R. CPLT-RRC: the rank of line-specific GCA for a parent line in diallel cross CPLT minus the rank of line-specific GCA for the
same parent line in diallel cross RRC. Juvenile and Adult represent diallel crosses simulated based on 12x1-III and 03x8-IV Bayesian outputs, respectively. In CPLT-R
plots, solid and dashed lines indicate the line of best fit and 95% confidence interval, respectively. In CPLT-RRC plots, letters above boxplots indicate which mean
rank differences (×), among the four categories of missing families, are significantly different.

Table 4
The number of matches and mismatches of the top three parent lines (by GCA ranking) between simulated complete (CPLT) and incomplete (R and RRC) diallel
crosses.

No. mismatches per simulation/
summary statistics

CPLT vs
Juvenile-R

CPLT vs
Juvenile-RRC

CPLT vs
Adult-R

CPLT vs
Adult-RRC

0 339 313 763 570
1 560 580 237 409
2 100 102 0 21
3 1 5 0 0
Total no. mismatches 763 799 237 451
Total no. parent lines to keep 3000 3000 3000 3000
Average no. mismatches 0.76 0.8 0.24 0.45
Average no. matches 2.24 ± 0.02 2.2 ± 0.02 2.76 ± 0.01 2.55 ± 0.02
Proportion of matches 0.75 0.73 0.92 0.85

Total no. mismatches: the total number of mismatches in top three parent lines between simulated complete and incomplete diallel crosses across 1000 simulated
diallel datasets of the same Phase-by-Pattern combination. Total no. parent lines to keep: the total number of top three parent lines that need to be kept across 1000
simulated diallel datasets of the same Phase-by-Pattern combination. Average no. mismatches per simulation (i.e. per top three parent lines)= Total no. mismatches
/ 1000 simulations. Average no. matches per simulation (i.e. per top three parent lines)=Total no. matches / 1000 simulations. Average no. matches per top three
parent lines± s.e. (of no. of matches per top three parent lines across 1000 simulations).
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.aquaculture.2019.05.031.
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